Counterexamples

$$\sim (\forall x \in S, P(x)) \equiv \exists x \in S, \sim P(x)$$

If the statement, " $\forall x \in S, P(x)$ ", is false, there exists $x \in S$ satisfying $\sim P(x)$.

Example

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, (x-1)y = y$$

Is it true or false? Prove or **disprove** a statement. **Examples** Prove or disprove each statement.

1. Let a and b be positive real numbers. Then

$$a+b > 2\sqrt{a\,b}.$$

2. There exists a natural number n such that $n^2 + 3n + 2$ is prime.

3. For all real numbers x and y, if $x^2 = y^2$, then x = y.

4. (Textbook exercise) For $n \in \mathbb{N}$, if $\frac{n(n+1)}{2}$ is odd, then $\frac{(n+1)(n+2)}{2}$ is odd.

5. Let A, B, and C be sets. Then $A - (B \cap C) = (A - B) \cap (A - C)$.

6. There is a real number x for which $x^4 < x < x^2$.

Proof by contradiction : General

"What does contradiction mean in logic?"

• A contradiction consists of a logical incompatibility between two or more propositions.

For example, $S \wedge \sim S$ is a contradiction, where S is a statement.

Procedure for proof by contradiction: Prove a statement S.

- 1. Assume that $\sim S$ is true.
- 2. Follow the logical deductions which will lead to a contradiction.
- 3. Since the assumption leads to a contradiction, the assumption can't be true. That is, $\sim S$ is false.
- 4. Since $\sim S$ is false, the statement S is true. (Why?)

Proof by contradiction for implications

Prove that $P \implies Q$ (i.e P is sufficient for Q).

Strategy:

- Assume that the negation of implication, that is, $P \wedge \sim Q$.

(we should find $\neg(Q)$ first.)

- Then we will arrive at a contradiction to our assumption " $P \wedge \sim Q$ " or something that is well known to be true.
- Therefore, as we've arrived at a false statement, we conclude that our assumption must be wrong.
- Thus $P \wedge \sim Q$ is false.
- Then, by the definition of negation, $P \implies Q$ is true because $P \implies Q$ is equivalent to $\sim (P \land \sim Q)$.

Lemma : If n^2 is even, then n is even.

- A. Remark. We already proved this lemma by using the contrapositive of the statement and now we will prove it by contradiction.
- B. Ingredients for the proof.
 - (1) What is the negation of the lemma?
 - (2) What is the assumption if we use the method of proof by the contradiction?
- C. Write the proof rigorously with complete sentences.

Theorem : $\sqrt{2}$ is not a rational number.

Exercises

1. The sum of an irrational number and a rational number is irrational.

2. Show that $\log_2 3$ is irrational. Note, by definition $\log_2 3$ is the number x, such that $2^x = 3$.

3. There is no greatest even integer.

4. If $a, b \in \mathbb{Z}$, then $a^2 - 4b \neq 2$.

5. If $a, b \in \mathbb{Z}$ and $a \ge 2$, then $a \nmid b$ or $a \nmid b + 1$.

6.
$$\forall x \in \mathbb{R}, (s + \sqrt{2} \notin \mathbb{Q}) \text{ or } (s - \sqrt{2} \notin \mathbb{Q}).$$